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Development of an Eastern Irish Sea TELEMAC model to predict 
changes to seabed habitats for future OWF and climate scenarios
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ECOWind-ACCELERATE aim and objectives
Understand the combined impacts of climate change and OWFs on 
accelerated ecologically-relevant seafloor change (Fig. 1).

• How will future climate driven changes to wind, waves, tides and 
sea-level influence flow and bed stress across the UK continental 
shelf?

• How will changing hydrodynamic forces around OWFs combine with 
those due to the climate crisis to drive seabed change the Eastern 
Irish Sea?

Fig. 1: Schematic of the drivers of ecologically-relevant seafloor change

Eastern Irish Sea model
• A TELEMAC model was developed for the Eastern Irish Sea with approx. 

390,000 nodes and 780,000 elements (Fig. 4).

• Existing (689) and proposed (136) OWF monopiles are represented by 
hexagonal islands in the mesh.

• The mesh resolution ranges from 1.5 km offshore to > 1 m in vicinity of 
monopiles.

• The model bathymetry is EMODnet 2022 MSL bathymetry  
(1/16’, ca. 115 m), supplemented with UKHO bathymetry data.

• A sediment map was produced from analysis of 3,504 sediment 
samples (Fig. 5): 
-  2,355 OneBenthic 
-  659 British Geological Survey 
-  490 Miscellaneous

• Bedrock and hard substrates were defined using BGS 250K Offshore 
Bedrock and Hard Substrate layers

• The model represents 6 sediment classes (Table 2, Fig. 6)

Table. 2: Model sediment fractions

Description Size Classes 
Fines * < 0.063 mm 
VF-F Sand 0.063 mm - 0.25 mm 
M Sand 0.25 mm - 0.5 mm 
C-VC Sand 0.5 mm - 2.0 mm 
Gravel 2.0 mm - 64.0 mm 
Cobbles > 64.0 mm 

*Note, we do not plan to model cohesive  
sediment transport 

Fig. 5: Available Eastern Irish Sea 
 sediment samples

Fig. 6: Proportions of the 6 sediment classes represented by the model

Model calibration and verification
• The hydrodynamic performance of the model 

is verified against observations of tidal levels, 
waves, and tidal currents during August 2011. The 
observation locations are shown in Fig. 7

• The error between predictions and observations is 
quantified by the mean error (ME or bias); the mean 
absolute error (MAE); and the root mean square 
error (RMSE)

• The Willmott (1981) Skill Score (WSS) is used to 
assess the skill of the model (WSS = 1 for a perfect 
fit).

• The WSS can be categorised as adequate (0.55-
0.65); sufficient (0.65-0.75); good (0.75-0.85); and 
very good (>0.85).

Fig. 7: Locations of tidal level, waves, and tidal current observations

Tidal levels
• The skill of the model for tidal levels is very good at 

all tide gauges with WSS > 0.99 (Table 3).

• The model predicts the magnitude and phase of 
the tidal levels well (Fig. 8) with MAE values ranging 
between 0.13 and 0.31 m (Table 3).

• The largest errors between observation and 
prediction occur at neap tides (Fig. 8)

Fig. 8: Predicted (blue) and observed (black) tidal levels

Table. 3: Tidal level error stats

Tidal Level (m) ME MAE RMSE R2 WSS
Heysham -0.10 0.31 0.40 0.98 0.994
Holyhead -0.01 0.15 0.26 0.97 0.991
Liverpool -0.15 0.23 0.28 0.99 0.997
Llandudno 0.05 0.13 0.16 0.99 0.999

Tidal currents
• The skill of the model is very good for both current 

speeds and directions with WSS > 0.96 (Table 4).

• The model accurately predicts peak tidal current 
speeds and corresponding directions well (Fig. 
9) with MAE values of 0.05 m/s and 15.05°, 
respectively (Table 4).

• The largest errors occur at neap tides when 
current speeds are weak resulting in uncertainty in 
direction.

Fig. 9: Predicted (blue) and observed (black) tidal currents

Table. 4: Tidal currents error stats

Site 01 ME MAE RMSE R2 WSS
Speed (m/s) -0.01 0.05 0.07 0.89 0.97
Direction (°) -4.36 15.05 34.39 0.86 0.96

Waves
• The model appropriately predicts the timing and 

magnitude of wave events (Fig. 9) represented by 
WSS values ≥ 0.97 (Table 5)

• The model overpredicts the sig. wave height of 
peak events reflected in MAE values of between 
0.10 and 0.14 m (Tab. 5).

• The model skill for wave directions is good. 
Uncertainty during periods of changing wave 
direction (Fig. 9) increases the MAE resulting in 
lower WSS values (Table 5).

Fig. 9: Predicted (blue) and observed (black) wave heights and directions

What is ecologically-relevant seafloor change?
• Seabed sediment composition can influence the benthic 

communities it supports and as a result seabird prey, and the 
seabirds which feed on them.

• Currents and wave-generated bed shear-stresses mobilise and 
transport sediment, thus changing sediment composition.

Fig. 2: Change in bed shear-stress (N/m2) between present day and 2100 (left); difference in peak bed shear-
stress between peak winter and peak summer (left)

• In the future we predict that SLR alone will reduce bed shear-stress 
by end-century, but the monthly variability of storms (less frequent. 
very unpredictable) will dominate the SLR signal (Fig. 2)

• How will the presence of OWF infrastructure enhance the combined 
effect of SLR and storms? 

• What impact will this have for seafloor change and the benthic/
seabird communities the seabed supports?

How do we predict this?
• Develop a high-resolution model including the presence of existing 

and proposed OWF infrastructure

• Force the model with tides and waves from a 1.5 km resolution UK 
Shelf model (without OWF infrastructure) (Fig. 3). Developed as part 
of Task 1.1.1 of the ECOWind-ACCELERATE Project

Fig. 3: Coupling between UK shelf scale model and high-resolution Eastern Irish Sea model

• Predict changes to flows, sediment transport and bed composition, 
with and without OWF infrastructure for past, present and future 
climate scenarios (Table 1).

Table. 1: Climate scenarios

Climate Scenario Winter Summer
Past Jan 1996 Jun 1992
Present Jan 2017 Jun 2018
Future (Mid-Century) Jan 2050 Jun 2053
Future (End-Century) Jan 2090 Jun 2093

Conclusions
• The model has been validated against observations 

of tidal levels, waves and tidal currents.

• The skill of the model provides confidence in 
ability of the model to accurately predict prevailing 
hydrodynamics. This instills confidence in applying 
the model to predict morphodynamics.

• The calibrated and validated hydrodynamic 
model will be coupled with a sediment 
transport model to predict changes to 
seabed composition, without and with OWF 
infrastructure (existing and proposed), for future 
climate scenarios (Table 1).
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Fig. 4: Eastern Irish Sea TELEMAC model mesh (right), zoomed in on 
North Hoyle OWF (top left) and an individual monopile (bottom left)

Table. 5: Wave error stats

Sig. Wave Height (m) ME MAE RMSE R2 WSS
Cleveleys (Clv) 0.09 0.14 0.19 0.94 0.97
Gwynt-y-Mor (GyM) 0.04 0.13 0.19 0.93 0.97
Rhyl Flats (RhF) 0.01 0.10 0.14 0.94 0.98
Wave Direction (°)
Cleveleys (Clv) 1.18 22.39 44.02 0.36 0.75
Gwynt-y-Mor (GyM) 6.01 32.68 71.61 0.33 0.76
Rhyl Flats (RhF) 8.96 35.36 76.00 0.37 0.78
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