# **Offshore Wind Infrastructure:** ECOWind The scale of change for benthic communities

E.E.Cook-2015@hull.ac.uk





Natural Environment **Research Council** 

# 1. Background & Aims

|  | Le. |
|--|-----|
|  |     |
|  |     |

Offshore wind (OW) is experiencing scale-up as demand for renewables increases to meet 2050 net zero targets, current global OW capacity has increased to ~70GW from just 12GW in 2015. <sup>[1]</sup>



The UK contributes greatly to this with a current capacity of roughly 15GW, with hopes to reach 50GW by 2030. <sup>[1]</sup>

To achieve this size & quantity of offshore infrastructure increasing, OW arrays are becoming more spatially expansive & the number of projects is rising. Over 5,000 turbines are expected to populate UK waters by 2030, approx. double current quantities.<sup>[2]</sup>

The introduction of infrastructure causes physical disturbances & fundamental changes



Such changes are likely to result in shifts amongst benthic communities from soft bottom infaunal to epifaunal communities (attached to new artificial substrate). <sup>[3,4]</sup>



Benthic communities play key roles in cycling nutrients, oxygenating sediments, creating habitat & providing food to fish.<sup>[5]</sup>



In isolation the impacts are local, but the cumulative impacts and in-combination effects are not yet known. Significant changes in the structure & functioning, functional connectivity at large, landscape scales are highly likely.

Aims hope to measure the scale of change in benthic habitat availability for monopile projects & determine what the possible change to benthic community type, biomass and



#### in habitat type from typically soft bottom sediment to artificial hard substrata.<sup>[3,4]</sup>

#### function may be

# 2. Methods

• Used online data bases & EIA reports to calculate the spatial area of baseline sediment lost and hard substrata gained resulting from the installation of monopile turbine foundations & associated scour protection

Ellie-Mae Cook<sup>1</sup>, Krysia Mazik<sup>2</sup>, Bryony Caswell<sup>2</sup>, Rodney Forster<sup>2</sup>

<sup>1</sup>Aura CDT, Energy and Environment Institute, University of Hull, UK <sup>2</sup> School of Environmental Sciences, University of Hull, UK

- Analysed 0.06m<sup>2</sup> scrapes of fouling communities from monopile foundations for species abundance, diversity & biomass
- Compared species abundance, diversity & biomass of 0.1m<sup>2</sup> pre and post benthic grab data from monitoring reports for a selection of farms





## 3. Spatial Scale of Change

| Offshore<br>Wind Farm | Total Seabed Lost (m <sup>2</sup> ) |         | Total Hard<br>Gaine | Substrata<br>d (m <sup>2</sup> ) | Change in Habitat Surface Area (%) |       |                      |  |
|-----------------------|-------------------------------------|---------|---------------------|----------------------------------|------------------------------------|-------|----------------------|--|
|                       | Monopiles                           | Scour   | Monopiles           | Scour                            | Monopiles                          | Scour | Monopiles<br>+ Scour |  |
| Hornsea 2             | 13,035                              | 311,025 | 191,697             | 323,813                          | 1,471                              | 104   | 159                  |  |
| Lynn                  | 476                                 | 12,490  | 7,181               | 19,076                           | 1,508                              | 153   | 203                  |  |
| Rampion               | 2,755                               | 101,645 | 95,659              | 101,616                          | 3,473                              | 100   | 189                  |  |
| Burbo<br>Bank         | 491                                 | 16,176  | 5,299               | 17,663                           | 1,080                              | 109   | 138                  |  |
|                       |                                     |         |                     |                                  |                                    |       | ••••                 |  |

• Estimations suggest an overall (%) disproportionate gain in available benthic habitat (gain of hard substrata in typically soft sediment environments)

 Magnitude of gains in surface area between farms varied & influenced by project characteristics

## 4. Ecological Change: Rampion

#### **Abundance, Diversity, Evenness**

| Sample         | N    | d   | H′  | זי  | Dominating sp.                                    |  |
|----------------|------|-----|-----|-----|---------------------------------------------------|--|
| Sediment WF005 | 160  | 6.8 | 3.2 |     | <i>Abra prismatica</i> (mollusca) &               |  |
| Sediment WF006 | 27   | 3.0 | 2.0 | 0.9 | polychaete sp.                                    |  |
| Turbine A8     | 3687 | 1.6 | 0.7 |     | <i>Jassa herdmani</i> (crustracea) & mollusca sp. |  |
| Turbine C11    | 2506 | 1.7 | 0.9 | 0.3 |                                                   |  |

• Turbine scrapes had greater **abundance** of individuals, was considerably **dominated** by a couple of species, showed reduced species diversity & richness





- **Trends** show an **increase** in **size** of infrastructure & greater **number** of turbines per project with time, whilst projects are located **further offshore** in deeper waters
- Cumulatively
  - $\circ$  Total seabed lost 7,160,088 m<sup>2</sup>

- Total hard substrata gained 11,316,7
- Total surface area of habitat increase
- Values are likely to largely underestimat other types of OW associated structures h



5. Context Specific



context specific nents to artificial hard substrata is greater rse sediments and artificial hard substrata

Large mud lobster individuals, Upogebia deltaura, likely to have caused large biomass

| ost <b>7,160,088 m</b><br>strata gained <b>11</b><br>area of habitat ind<br>o largely <b>undere</b><br>/ associated struc | 1 <sup>2</sup><br>,316,759 m <sup>2</sup><br>crease 158%<br>stimate real life s<br>ctures have not be | scenarios as<br>en included | 50°N-      | gnitude of dipared to di                       | 6°W<br>Lev<br>change from b        | 4°W<br>vel of impace<br>baseline soft<br>ween baseline | 2<br>ct is co<br>sedime<br>ne coar |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|------------|------------------------------------------------|------------------------------------|--------------------------------------------------------|------------------------------------|
| Foundations gain Fou                                                                                                      | Indations loss Scour Prote                                                                            | ction gain Scour Prote      | ction loss |                                                |                                    |                                                        |                                    |
| England E                                                                                                                 | England SE                                                                                            | England NW Ireland & Wales  | Scotland   | <ul> <li>Overa<br/>greate<br/>in ha</li> </ul> | all, there is<br>er increase<br>rd | a                                                      |                                    |

• Biomass appears greater for turbine communities

**Turbine Scrapes** 

Total Species = 19





substrata than loss of soft **sediment** for each OW project

Trends show greater increase in hard substrata gained & soft sediment lost with more recent & future OW projects

for WF005

### 6. Conclusions & Future Work

Large **increase** in number & spatial extent of **offshore infrastructure**; benthic impact needs to be better understood.

Our initial study suggests an overall **disproportionate gain** in benthic habitat. Magnitude of increase for each OW project influenced by design & location. **Diversity** was less, but **abundance** & **biomass** appear higher on turbines compared to pre-construction sediment.

New communities may differ from baselines, causing local ecological functional shifts. Level of impact is **context specific**. The planned expansion of OW, may substantially change ecological functioning at landscape scales.

Ongoing work will consider functional trait analysis to further assess shifts in ecological functioning

#### References

[1] Global Wind Energy Council (2024) Global Offshore Wind Report 2022. Available online: https://windeurope.org/intelligenceplatform/product/wind-energy-in-europe-2022-statistics-and-the-outlook-for-2023-2027/ [Accessed 01.05.2023]. [3] Dannheim et al. (2020) Benthic effect of offshore renewables: identification of knowledge gaps and urgently needed research. ICES Journal of Marine Science. 7(3), 1092-1108. [4] Coolen et al. (2022) Generalized changes of benthic communities after construction of wind farms in the southern North Sea. Journal of Environmental Management. 315(1), 115173. [5] Snelgrave, P.V. (1997) The importance of marine sediment biodiversity in ecosystem processes. Ambio, 26(8), 578-583. [6] European Marine Observation and Data Network EMODnet (2021) EUNIS Broad scale benthic habitat types. Available online: https://emodnet.ec.europa.eu/geoviewer/# [Accessed 15.05.2023].